Linear Equations with Two Variables

An Infinite Number of Solutions

So far we have solved linear equations with one variable e.g. 2x + 5 = 19, here the variable is x and the solution to the equation is x = 7 because $2 \times 7 + 5 = 19$. Now we will look at linear equations with 2 variables, like 3x + 2y = 15. Here the two variables are x and y, that means a solution is a pair of values one \boldsymbol{x} and one \boldsymbol{y} belonging together. The equation 3x + 2y = 15 has infinite solutions. For instance : x = 1, y = 6because $3 \times 1 + 2 \times 6 = 15$ because $3 \times 3 + 2 \times 3 = 15$ x = 3, y = 3x = 6, $y = -1\frac{1}{2}$ because $3 \times 6 + 2 \times -1\frac{1}{2} = 15$. For any chosen value of $\boldsymbol{x},$ you can find a value for \boldsymbol{y} to go with it : then $3 \times 20 + 2y = 15$ (-60)e.g. if x = 20, 2y = -45(÷2) $y = -22\frac{1}{2}$ So, x = 20, $y = -22\frac{1}{2}$ is another solution.

- Given is an equation with two variables: 4x + y = 9. 1
- Show that x = 5, y = -11 is one of its solutions. a)
- b) Is x = 1, y = -13 part of the solution set?
- In one of the solutions x = 7. What must be the y-value? C)

d) In another solution y = 7. What must be the x-value?

- Find 2 solutions to this linear equation with two variables : 2 2x - 5y = 13. For each solution the value of one of the variables is given.
- a) y = 1,

		Solution :	x =,	y =
b)	x = 4,			

Solution : x =, y =

Solutions Presented in a Table B

Working

Sets of solutions are often shown in a table. We choose a set of values of one variable and calculate the value of the second variable. The solution can be shown as an ordered pair (x, y).

Example : Given is the equation 2x + y = 12.

- a) Set up a table of solutions, with x going from -2 up to 3.
- b) Describe the pattern shown by the set of solutions.

: a)	х	2x + y = 12	У	solution
	-2	-4 + y = 12	16	(-2, 16)
	-1	-2 + y = 12	14	(-1, 14)
	0	0 + y = 12	12	(0, 12)
	1	2 + y = 12	10	(1, 10)
	2	4 + y = 12	8	(2, 8)
	3	6 + y = 12	6	(3, 6)

- b) I notice that when the x values go up in ones, the y values go down in twos.
- 1 Given is the equation 4x - y = 2.
- Set up a table of solutions with x going from 3 down to -2. a)

x
3
2
2

b) Describe the pattern shown by the set of solutions.

Given is the equation x + 2y = 6. 2

a)

x + 2y = 6solution x y b) Describe the pattern shown by the set of solutions.

Set up a table of solutions with x going from -2 up to 3.

Sigma Maths Workbook AS 1.4 - Linear Algebra © Sigma Publications Ltd 2014. ISBN 978-1-877567-55-1. A Copyright Licensing Ltd licence is required to copy any part of this resource.

25

Using the Equation

A No Graphs Needed

Many questions about points and lines can be answered without drawing the graph.

Examples :

- a) A = (4, 3), B = (-4, -2), C = (-4, -4)Which of these points lie(s) on line $y = \frac{3}{4}x - 1$?
- b) Point Q is the point where the line y = 4 crosses the line 2x + 3y = 6. What are the coordinates of Q?

Working :

a) Substitute x and y values into the equation $y = \frac{3}{4}x - 1$ Check whether the equation is true. Point A : x = 4, y = 3 3 $\neq \frac{3}{4} \times 4 - 1$ Not true Point B : x = -4, y = -2 -2 $\neq \frac{3}{4} \times -4 - 1$ Not true Point C : x = -4, y = -4 -4 = $\frac{3}{4} \times -4 - 1$ True

So point C (-4, -4) is on the line.

- b) Since Q is on the line y = 4, its y-coordinate is 4; Q = (x, 4)Since Q is also on the line 2x + 3y = 6 then $2x + 3 \times 4 = 6$ Solving 2x + 12 = 6 gives x = -3. Therefore Q = (-3, 4).
- 1 A = (0, -2) B = (8, 0) C = (8, -2)Which of these points are on the line x - 4y = 8?
- 2 T is the point where the line x = -2 crosses the line 3x + 4y = 0. What are the coordinates of T?
- 3 Point R is on the x-axis and also on the line y = 3x 5What are the coordinates of R?

4 A = (4, 0) B = (4, 1) C = (2, -1) Which of these points is on line x - 2y = 4 as well as line y = x - 3?

B Jobs

1	E = (2, 0) F = (-2, 2) G = (4, -1) One of these points is the intersection of lines $y = 1 - \frac{1}{2}x$ and $x + 4y = 6$. Which point is it?
2	An IT technician charges \$46 call-out cost and \$84 per hour. Formula : $C = 46 + 84h$
a)	How much does he charge for a call-out job taking 2 hours and 30 minutes?
b)	How much for a 10 minute call-out job?
c)	The technician charged \$95 for a call-out job. How long did the job take?

Sigma Maths Workbook AS 1.4 - Linear Algebra @ Sigma Publications Ltd 2014. ISBN 978-1-877567-55-1. A Copyright Licensing Ltd licence is required to copy any part of this resource.

Solving Linear Problems 2

A The Cost of Electricity

1	In our town we have the choice between two electricity providers <i>Power People</i> (PP) and <i>Electric Company</i> (EC). Both companies have a fixed line charge and a cost per unit. The graph on the right shows the monthly charges of PP.	:	C 260 240 220 200								-PP	<u> </u>	
a)	EC charges \$40 fixed line charge plus 60 cents per unit. This can be described by the equation $C = 0.6u + 40$. Draw the graph of EC's monthly charges on the grid.		180 () 160 140 0 120 120 100 80				/						
b)	Which company has a higher charge per unit?		60 40										
c)	Write an equation for the charges of PP.		20										
2	A third power company called $ZipZap$ (ZZ) joins the market. They $ZipZap$ aims to undercut both PP and EC for households using a	r too have a t most 400	a fixe	d lin	e ch mor	arge	and	aco	ost p	ber u	nit.	 	
a)	Draw a line showing the possible charges of ZZ.												
b)	Describe the charge of ZZ in words											 	
B													
4	Training Session												

- Chloe starts with Amy, goes as fast as Ben on section A, but slows down to 4 km/h on section B.
- a) Draw lines to show the situation as it develops.
- b) Calculate Amy's speed on section B.
 c) Calculate Chloe's average speed for the entire race.
 d) Give times where people pass each other.

Linear Programming 1

A The Hot Baker	A	The	Hot	Baker
-----------------	---	-----	-----	-------

39)

1	Every day 'The Hot Baker' bakes white buns and rye buns.	
a)	The maximum number buns they bake in a day is 90. Write an inequation for this information, using ${\bf w}$ for the number of white buns and ${\bf r}$ for the number of rye buns baked in a day.	
b)	The demand for rye buns is at least half the number of white buns. Write another inequation.	
C)	Also known is that \mathbf{w} and \mathbf{r} are whole numbers. Why?	S
0)		
d)	The region where both inequations are true at the same time car shown in the graph.	n be shown on a graph. The boundary lines of the region are
	i) Write an equation on each line.ii) Work out the coordinates of R and S.	
	iii) Shade the region where both inequations are true simultaneo	busly.
e)	i) The apprentice baker wants to bake 50 white and 20 rye bu	ns. Is this a good idea? Say why.
	ii) Can you recommend a better number of rye buns to go with	50 white buns? Explain.
f)	Suppose the profit on white buns is higher than the profit on rye How many of each should they bake? Explain.	buns.

Sigma Maths Workbook AS 1.4 - Linear Algebra © Sigma Publications Ltd 2014. ISBN 978-1-877567-55-1. A Copyright Licensing Ltd licence is required to copy any part of this resource.