Linear Equations with Two Variables

A An Infinite Number of Solutions

So far we have solved linear equations with one variable e.g. $2 x+5=19$, here the variable is x and the solution to the equation is $x=7$ because $2 \times 7+5=19$.
Now we will look at linear equations with 2 variables, like $3 x+2 y=15$. Here the two variables are x and y, that means a solution is a pair of values one x and one y belonging together. The equation $3 x+2 y=15$ has infinite solutions.
For instance : $x=1, y=6 \quad$ because $3 \times 1+2 \times 6=15$

$$
x=3, y=3, \quad \text { because } 3 \times 3+2 \times 3=15
$$

$$
x=6, y=-1 \frac{1}{2} \quad \text { because } 3 \times 6+2 x-1 \frac{1}{2}=15
$$

For any chosen value of x, you can find a value for y to $g o$ with it :

$$
\begin{aligned}
\text { e.g. if } x=20, \quad \text { then } 3 \times 20+2 y & =15 \\
2 y & =-45 \\
y & =-22 \frac{1}{2}
\end{aligned}
$$

So, $x=20, y=-22 \frac{1}{2}$ is another solution.

1 Given is an equation with two variables: $4 \mathrm{x}+\mathrm{y}=9$.
a) Show that $\mathrm{x}=5, \mathrm{y}=-11$ is one of its solutions.
b) Is $\mathrm{x}=1, \mathrm{y}=-13$ part of the solution set?
c) In one of the solutions $x=7$. What must be the y-value?
\qquad
\qquad
\qquad
d) In another solution $\mathrm{y}=7$. What must be the x -value?

2 Find 2 solutions to this linear equation with two variables : $2 x-5 y=13$. For each solution the value of one of the variables is given.
a) $\mathrm{y}=1$, \qquad
b) $\mathrm{x}=4$,

Solution : $\mathrm{x}=$
$\mathrm{y}=$
b) $x=$
\qquad
\qquad

B Solutions Presented in a Table

Sets of solutions are often shown in a table. We choose a set of values of one variable and calculate the value of the second variable. The solution can be shown as an ordered pair (x, y).

Example : Given is the equation $2 \mathrm{x}+\mathrm{y}=12$.
a) Set up a table of solutions, with \mathbf{x} going from -2 up to 3 .
b) Describe the pattern shown by the set of solutions.

Working : a)

x	$2 \mathrm{x}+\mathrm{y}=12$	y	solution
-2	$-4+\mathrm{y}=12$	16	$(-2,16)$
-1	$-2+\mathrm{y}=12$	14	$(-1,14)$
0	$0+\mathrm{y}=12$	12	$(0,12)$
1	$2+\mathrm{y}=12$	10	$(1,10)$
2	$4+\mathrm{y}=12$	8	$(2,8)$
3	$6+\mathrm{y}=12$	6	$(3,6)$

b) I notice that when the x values go up in ones, the y values go down in twos.

1 Given is the equation $4 \mathrm{x}-\mathrm{y}=2$.
a) Set up a table of solutions with x going from 3 down to -2 .

x	$4 \mathrm{x}-\mathrm{y}=2$	y	solution
3.	12-y=2	10	(3, 10)
2.			

b) Describe the pattern shown by the set of solutions.

2 Given is the equation $\mathrm{x}+2 \mathrm{y}=6$.
a) Set up a table of solutions with x going from -2 up to 3 .

x	$x+2 y=6$	y	solution

b) Describe the pattern shown by the set of solutions.
\qquad

25 Using the Equation

A No Graphs Needed

Many questions about points and lines can be answered without drawing the graph.

Examples
a) $\mathrm{A}=(4,3), \mathrm{B}=(-4,-2), \mathrm{C}=(-4,-4)$

Which of these points lie(s) on line $y=\frac{3}{4} x-1$?
b) Point Q is the point where the line $y=4$ crosses the line $2 \mathrm{x}+3 \mathrm{y}=6$. What are the coordinates of Q ?
Working
a) Substitute x and y values into the equation $\mathrm{y}=\frac{3}{4} \mathrm{x}-1$ Check whether the equation is true.

Point A : $x=4$,	$y=3$		$\neq \frac{3}{4} \times 4-1$	Not true
Point B : $x=-4, y=-2$	-2	$\neq \frac{3}{4} x-4-1$	Not true	
Point C : $x=-4, y=-4$	-4	$=\frac{3}{4} x-4-1$	True	

b) Since Q is on the line $y=4$, its y-coordinate is $4 ; Q=(x, 4)$ Since Q is also on the line $2 x+3 y=6$ then $2 x+3 \times 4=6$ Solving $2 x+12=6$ gives $x=-3$.
Therefore $\mathrm{Q}=(-3,4)$.
$1 \mathrm{~A}=(0,-2) \quad \mathrm{B}=(8,0) \quad \mathrm{C}=(8,-2)$
Which of these points are on the line $x-4 y=8$?

2 T is the point where the line $\mathrm{x}=-2$ crosses the line $3 x+4 y=0$. What are the coordinates of T ?
\qquad
\qquad
\qquad

3 Point R is on the x-axis and also on the line $y=3 x-5$ What are the coordinates of R ?
\qquad
\qquad
\qquad
$4 \mathrm{~A}=(4,0) \quad \mathrm{B}=(4,1) \quad \mathrm{C}=(2,-1)$
Which of these points is on line $\mathrm{x}-2 \mathrm{y}=4$ as well as line $y=x-3$?
\qquad
\qquad
\qquad
\qquad

B Jobs

$1 \quad \mathrm{E}=(2,0) \quad \mathrm{F}=(-2,2) \quad \mathrm{G}=(4,-1)$
One of these points is the intersection of lines $y=1-\frac{1}{2} x$ and $x+4 y=6$. Which point is it?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 An IT technician charges $\$ 46$ call-out cost and $\$ 84$ per hour. Formula: $\mathrm{C}=46+84 \mathrm{~h}$
a) How much does he charge for a call-out job taking 2 hours and 30 minutes?
\qquad
\qquad
b) How much for a 10 minute call-out job?
\qquad
\qquad
c) The technician charged $\$ 95$ for a call-out job. How long did the job take?
\qquad
\qquad
\qquad
\qquad

31 Solving Linear Problems 2

A The Cost of Electricity

1 In our town we have the choice between two electricity providers :
Power People (PP) and Electric Company (EC).
Both companies have a fixed line charge and a cost per unit. The graph on the right shows the monthly charges of PP.
a) EC charges $\$ 40$ fixed line charge plus 60 cents per unit. This can be described by the equation $\mathrm{C}=0.6 \mathrm{u}+40$.
Draw the graph of EC's monthly charges on the grid.
b) Which company has a higher charge per unit?
c) Write an equation for the charges of PP.

d) The Crawford family uses 350 units per month. How much could they save by selecting the best power company?

2 A third power company called ZipZap (ZZ) joins the market. They too have a fixed line charge and a cost per unit. ZipZap aims to undercut both PP and EC for households using at most 400 units per month.
a) Draw a line showing the possible charges of ZZ .
b) Describe the charge of ZZ in words.

B Training Session

1 Amy, Ben and Chloe are training for a cross-country race. Section A is 6 km long on the flat, section B is 4 km on hilly terrain.

- Amy takes 40 min for section A, 50 min for section B.
- Ben starts 5 min after Amy and finishes section A 5 min before her. He runs section B at a speed of $6 \mathrm{~km} / \mathrm{h}$.
- Chloe starts with Amy, goes as fast as Ben on section A, but slows down to $4 \mathrm{~km} / \mathrm{h}$ on section B.
a) Draw lines to show the situation as it develops.
\qquad
\qquad
b) Calculate Amy's speed on section B.
\qquad
\qquad
c) Calculate Chloe's average speed for the entire race.

d) Give times where people pass each other.

39 Linear Programming 1

A The Hot Baker

1 Every day 'The Hot Baker' bakes white buns and rye buns.
a) The maximum number buns they bake in a day is 90 . Write an inequation for this information, using w for the number of white buns and r for the number of rye buns baked in a day.
b) The demand for rye buns is at least half the number of white buns. Write another inequation.
\qquad
c) Also known is that w and r are whole numbers. Why?
\qquad
\qquad

\qquad
d) The region where both inequations are true at the same time can be shown on a graph. The boundary lines of the region are shown in the graph.
i) Write an equation on each line.
ii) Work out the coordinates of R and S .
\qquad
\qquad
\qquad
\qquad
iii) Shade the region where both inequations are true simultaneously.
e) i) The apprentice baker wants to bake 50 white and 20 rye buns. Is this a good idea? Say why.
ii) Can you recommend a better number of rye buns to go with 50 white buns? Explain.
\qquad
\qquad
\qquad
f) Suppose the profit on white buns is higher than the profit on rye buns. How many of each should they bake? Explain.

